Quantum Zeno effect
From Wikipedia, the free encyclopedia
The quantum Zeno effect (also known as the Turing paradox) is a situation in which an unstable particle, if observed continuously, will never decay.[1] One can "freeze" the evolution of the system by measuring it frequently enough in its (known) initial state. The meaning of the term has since expanded, leading to a more technical definition in which time evolution can be suppressed not only by measurement: the quantum Zeno effect is the suppression of unitary time evolution caused by quantum decoherence in quantum systems provided by a variety of sources: measurement, interactions with the environment, stochastic fields, and so on.[2] As an outgrowth of study of the quantum Zeno effect, it has become clear that applying a series of sufficiently strong and fast pulses with appropriate symmetry can also decouple a system from its decohering environment.[3]
The name comes from Zeno's arrow paradox which states that, since an arrow in flight is not seen to move during any single instant, it cannot possibly be moving at all.[note 1] The comparison with Zeno's paradox is due to a 1977 paper by George Sudarshan and Baidyanath Misra.[1]
The first rigorous and general derivation of this effect was presented in 1974 by Degasperis et al. [4] However it has to be mentioned that Alan Turing described it in 1954:[5]
It is easy to show using standard theory that if a system starts in an eigenstate of some observable, and measurements are made of that observable N times a second, then, even if the state is not a stationary one, the probability that the system will be in the same state after, say, one second, tends to one as N tends to infinity; that is, that continual observations will prevent motion …
— Alan Turing as quoted by A. Hodges in Alan Turing: Life and Legacy of a Great Thinker p. 54
resulting in the earlier name Turing paradox. The idea is contained in the early work by John von Neumann, sometimes called the reduction postulate.[6] It was shown that the quantum Zeno effect of a single system is equivalent to the indetermination of the quantum state of a single system.[7][8][9]
According to the reduction postulate, each measurement causes the wavefunction to "collapse" to a pure eigenstate of the measurement basis. In the context of this effect, an "observation" can simply be the absorption of a particle, without an observer in any conventional sense. However, there is controversy over the interpretation of the effect, sometimes referred to as the "measurement problem" in traversing the interface between microscopic and macroscopic.[10][11]
One should also mention another crucial problem related to the effect. It has been thoroughly discussed in a paper by Ghirardi "et al".[12] The problem is strictly connected to the time-energy indeterminacy relation. If one wants to make the measurement process more and more frequent, one has to correspondingly decrease the time duration of the measurement itself. But the request that the measurement last only a very short time implies that the energy spread of the state on which reduction occurs becomes more and more large. However, the deviations from the exponential decay law for small times, is crucially related to the inverse of the energy spread so that the region in which the deviations are appreciable shrinks when one makes the measurement process duration shorter and shorter. An explicit evaluation of these two competing requests shows that it is inappropriate, without taking into account this basic fact, to deal with the actual occurrence and emergence of Zeno's effect.
Closely related (and sometimes not distinguished from the quantum Zeno effect) is the watchdog effect, in which the time evolution of a system is affected by its continuous coupling to the environment.[13][14]
Contents [hide]
1 Description
2 Various realizations and general definition
3 Periodic measurement of a quantum system
4 Experiments and discussion
5 Significance to "quantum mind" theories
6 See also
7 External links
8 Notes
9 References
Description[edit]
Unstable quantum systems are predicted to exhibit a short time deviation from the exponential decay law.[15][16] This universal phenomenon has led to the prediction that frequent measurements during this nonexponential period could inhibit decay of the system, one form of the quantum Zeno effect. Subsequently, it was predicted that an enhancement of decay due to frequent measurements could be observed under somewhat more general conditions, leading to the so-called anti-Zeno effect.[note 2]
In quantum mechanics, the interaction mentioned is called "measurement" because its result can be interpreted in terms of classical mechanics. Frequent measurement prohibits the transition. It can be a transition of a particle from one half-space to another (which could be used for atomic mirror in an atomic nanoscope[17]) as in the time of arrival problem,[18][19] a transition of a photon in a waveguide from one mode to another, and it can be a transition of an atom from one quantum state to another. It can be a transition from the subspace without decoherent loss of a q-bit to a state with a q-bit lost in a quantum computer.[20][21] In this sense, for the q-bit correction, it is sufficient to determine whether the decoherence has already occurred or not. All these can be considered as applications of the Zeno effect.[22] By its nature, the effect appears only in systems with distinguishable quantum states, and hence is inapplicable to classical phenomena and macroscopic bodies.
Various realizations and general definition[edit]
The treatment of the Zeno effect as a paradox is not limited to the processes of quantum decay. In general, the term Zeno effect is applied to various transitions, and sometimes these transitions may be very different from a mere "decay" (whether exponential or non-exponential).
One realization refers to the observation of an object (Zeno's arrow, or any quantum particle) as it leaves some region of space. In the 20th century, the trapping (confinement) of a particle in some region by its observation outside the region was considered as nonsensical, indicating some non-completeness of quantum mechanics.[23] Even as late as 2001, confinement by absorption was considered as a paradox.[24] Later, similar effects of the suppression of Raman scattering was considered an expected effect,[25][26][27] not a paradox at all. The absorption of a photon at some wavelength, the release of a photon (for example one that has escaped from some mode of a fiber), or even the relaxation of a particle as it enters some region, are all processes that can be interpreted as measurement. Such a measurement suppresses the transition, and is called the Zeno effect in the scientific literature.
In order to cover all of these phenomena (including the original effect of suppression of quantum decay), the Zeno effect can be defined as a class of phenomena in which some transition is suppressed by an interaction — one that allows the interpretation of the resulting state in the terms transition did not yet happen and transition has already occurred, or The proposition that the evolution of a quantum system is halted if the state of the system is continuously measured by a macroscopic device to check whether the system is still in its initial state.[28]
Periodic measurement of a quantum system[edit]
Consider a system in a state A, which is the eigenstate of some measurement operator. Say the system under free time evolution will decay with a certain probability into state B. If measurements are made periodically, with some finite interval between each one, at each measurement, the wave function collapses to an eigenstate of the measurement operator. Between the measurements, the system evolves away from this eigenstate into a superposition state of the states A and B. When the superposition state is measured, it will again collapse, either back into state A as in the first measurement, or away into state B. However, its probability of collapsing into state B, after a very short amount of time t, is proportional to t², since probabilities are proportional to squared amplitudes, and amplitudes behave linearly. Thus, in the limit of a large number of short intervals, with a measurement at the end of every interval, the probability of making the transition to B goes to zero.
According to decoherence theory, the collapse of the wave function is not a discrete, instantaneous event. A "measurement" is equivalent to strongly coupling the quantum system to the noisy thermal environment for a brief period of time, and continuous strong coupling is equivalent to frequent "measurement". The time it takes for the wave function to "collapse" is related to the decoherence time of the system when coupled to the environment. The stronger the coupling is, and the shorter the decoherence time, the faster it will collapse. So in the decoherence picture, a perfect implementation of the quantum Zeno effect corresponds to the limit where a quantum system is continuously coupled to the environment, and where that coupling is infinitely strong, and where the "environment" is an infinitely large source of thermal randomness.
Your role as a moderator enables you immediately ban this user from messaging (bypassing the report queue) if you select a punishment.
7 Day Ban
7 Day Ban
30 Day Ban
Permanent Ban
This site uses cookies to provide you with the best possible user experience. By clicking 'Accept', you agree to the policies documented at Cookie Policy and Privacy Policy.
Accept
This site uses cookies to provide you with the best possible user experience. By continuing to use this site, you agree to the policies documented at Cookie Policy and Privacy Policy.
close
Our policies have recently changed. By clicking 'Accept', you agree to the updated policies documented at Cookie Policy and Privacy Policy.
Accept
Our policies have recently changed. By continuing to use this site, you agree to the updated policies documented at Cookie Policy and Privacy Policy.