I'm 8 and what is the moon?
Edit, everytime you vote and don't comment someone's testicle explodes.
-
The Moon (Latin: Luna) is Earth's only natural satellite.[e][8] Although not the largest natural satellite in the Solar System, among the satellites of major planets it is the largest relative to the size of the object it orbits (its primary).[f][g] It is the second-densest satellite among those whose densities are known (after Jupiter's satellite Io). The Moon is thought to have formed approximately 4.5 billion years ago, not long after Earth. Although there have been several hypotheses for its origin in the past, the current most widely accepted explanation is that the Moon formed from the debris left over after a giant impact between Earth and a Mars-sized body called Theia. The Moon is in synchronous rotation with Earth, always showing the same face with its near side marked by dark volcanic maria that fill between the bright ancient crustal highlands and the prominent impact craters. It is the second-brightest regularly visible celestial object in Earth's sky (after the Sun), as measured by illuminance on Earth's surface. Although it can appear a very bright white, its surface is actually dark, with a reflectance just slightly higher than that of worn asphalt. Its prominence in the sky and its regular cycle of phases have, since ancient times, made the Moon an important cultural influence on language, calendars, art, and mythology. The Moon's gravitational influence produces the ocean tides and the slight lengthening of the day. The Moon's current orbital distance is about thirty times the diameter of Earth, causing it to have an apparent size in the sky almost the same as that of the Sun. This allows the Moon to cover the Sun nearly precisely in total solar eclipse. This matching of apparent visual size is a coincidence. The Moon's linear distance from Earth is currently increasing at a rate of 3.82 ± 0.07 centimetres (1.504 ± 0.028 in) per year, but this rate is not constant. The Soviet Union's Luna program was the first to reach the Moon with unmanned spacecraft in 1959; the United States' NASA Apollo program achieved the only manned missions to date, beginning with the first manned lunar orbiting mission by Apollo 8 in 1968, and six manned lunar landings between 1969 and 1972, with the first being Apollo 11. These missions returned over 380 kg of lunar rocks, which have been used to develop a geological understanding of the Moon's origin, the formation of its internal structure, and its subsequent history. After the Apollo 17 mission in 1972, the Moon has been visited by only unmanned spacecraft. Name and etymology The English proper name for Earth's natural satellite is "the Moon".The noun moon derives from moone (around 1380), which developed from mone (1135), which derives from Old English mōna (dating from before 725), which, like all Germanic language cognates, ultimately stems from Proto-Germanie. The principal modern English adjective pertaining to the Moon is lunar, derived from the Latin Luna. Another less common adjective is selenic, derived from the Ancient Greek Selene (Σελήνη), from which the prefix "seleno-" (as in selenography) is derived. Formation Several mechanisms have been proposed for the Moon's formation 4.527 ± 0.010 billion years ago,[h] some 30–50 million years after the origin of the Solar System. Recent research presented by Rick Carlson indicates a slightly lower age of between 4.40 and 4.45 billion years. These mechanisms included the fission of the Moon from Earth's crust through centrifugal force(which would require too great an initial spin of Earth), vvthe gravitational capture of a pre-formed Moon[19] (which would require an unfeasibly extended atmosphere of Earth to dissipate the energy of the passing Moon),[18] and the co-formation of Earth and the Moon together in the primordial accretion disk (which does not explain the depletion of metals in the Moon). These hypotheses also cannot account for the high angular momentum of the Earth–Moon system. The evolution of the Moon and a tour of the Moon. The prevailing hypothesis today is that the Earth–Moon system formed as a result of a giant impact, where a Mars-sized body (named Theia) collided with the newly formed proto-Earth, blasting material into orbit around it that accreted to form the Moon. This hypothesis perhaps best explains the evidence, although not perfectly. Eighteen months prior to an October 1984 conference on lunar origins, Bill Hartmann, Roger Phillips, and Jeff Taylor challenged fellow lunar scientists: "You have eighteen months. Go back to your Apollo data, go back to your computer, do whatever you have to, but make up your mind. Don’t come to our conference unless you have something to say about the Moon’s birth." At the 1984 conference at Kona, Hawaii, the giant impact hypothesis emerged as the most popular. Before the conference, there were partisans of the three 'traditional' theories, plus a few people who were starting to take the giant impact seriously, and there was a huge apathetic middle who didn’t think the debate would ever be resolved. Afterward there were essentially only two groups: the giant impact camp and the agnostics." Giant impacts are thought to have been common in the early Solar System. Computer simulations modelling a giant impact are consistent with measurements of the angular momentum of the Earth–Moon system and the small size of the lunar core. These simulations also show that most of the Moon came from the impactor, not from the proto-Earth. However, more-recent tests suggest more of the Moon coalesced from Earth and not the impactor. Meteorites show that other inner Solar System bodies such as Mars and Vesta have very different oxygen and tungsten isotopic compositions to Earth, whereas Earth and the Moon have nearly identical isotopic compositions. Post-impact mixing of the vaporized material between the forming Earth and Moon could have equalized their isotopic compositions, although this is debated. The large amount of energy released in the giant impact event and the subsequent re-accretion of material in Earth orbit would have melted the outer shell of Earth, forming a magma ocean.[31][32] The newly formed Moon would also have had its own lunar magma ocean; estimates for its depth range from about 500 km (300 miles) to the entire radius of the Moon (1,737 km (1,079 miles)). Despite its accuracy in explaining many lines of evidence, there are still some difficulties that are not fully explained by the giant impact hypothesis, most of them involving the Moon's composition. Ancient rift valleys – In 2001, a team at the Carnegie Institute of Washington reported the most precise measurement of the isotopic signatures of lunar rocks.[34] To their surprise, the team found that the rocks from the Apollo program carried an isotopic signature that was identical with rocks from Earth, and were different from almost all other bodies in the Solar System. Because most of the material that went into orbit to form the Moon was thought to come from Theia, this observation was unexpected. In 2007, researchers from the California Institute of Technology announced that there was less than a 1% chance that Theia and Earth had identical isotopic signatures. Published in 2012, an analysis of titanium isotopes in Apollo lunar samples showed that the Moon has the same composition as Earth, which conflicts with what is expected if the Moon formed far from Earth's orbit or from Theia. Variations on the giant impact hypothesis may explain this data. Structure of the Moon Chemical composition of the lunar surface regolith (derived from crustal rocks) Compound Formula Composition (wt %) Maria Highlands silica SiO2 45.4% 45.5% alumina Al2O3 14.9% 24.0% lime CaO 11.8% 15.9% iron(II) oxide FeO 14.1% 5.9% magnesia MgO 9.2% 7.5% titanium dioxide TiO2 3.9% 0.6% sodium oxide Na2O 0.6% 0.6% Total 99.9% 100.0% The Moon is a differentiated body: it has a geochemically distinct crust, mantle, and core. The Moon has a solid iron-rich inner core with a radius of 240 km (150 mi) and a fluid outer core primarily made of liquid iron with a radius of roughly 300 km (190 mi). Around the core is a partially molten boundary layer with a radius of about 500 km (310 mi). This structure is thought to have developed through the fractional crystallization of a global magma ocean shortly after the Moon's formation 4.5 billion years ago. Crystallization of this magma ocean would have created a mafic mantle from the precipitation and sinking of the minerals olivine, clinopyroxene, and orthopyroxene; after about three-quarters of the magma ocean had crystallised, lower-density plagioclase minerals could form and float into a crust on top. The final liquids to crystallise would have been initially sandwiched between the crust and mantle, with a high abundance of incompatible and heat-producing elements. Consistent with this, geochemical mapping from orbit shows the crust is mostly anorthosite, and moon rock samples of the flood lavas erupted on the surface from partial melting in the mantle confirm the mafic mantle composition, which is more iron rich than that of Earth. Geophysical techniques suggest that the crust is on average circa 50 km (31 mi) thick. The Moon is the second densest satellite in the Solar System after Io. However, the inner core of the Moon is small, with a radius of about 350 km (220 mi) FUUUUUUUUUUUUUUUUUUDDGE MAN. [spoiler]Wikipedia. Wikimedia Foundation, n.d. Web. 12 May 2015. <http://en.wikipedia.org/wiki/Moon#Name_and_etymology>.[/spoiler]